Preprint CheMlIn Technical Reports ISSN 3061-1075

Data-Driven Polyoxometalate Chemistry

Aleksandar Kondinski !, Nadiia I. Gumerova?, Annette Rompel 2

Paolo Falcaro ', Tobias Schreck?

released: July 6, 2025

Institute of Physical and Theoretical Chemistry 2 Institut fiir Biophysikalische Chemie
Graz University of Technology Fakultit fiir Chemie, Universitit Wien
Stremayrgasse 9, 8010 Graz, Austria Josef-Holaubek-Platz 2, 1090 Vienna, Austria

Institute of Visual Computing
Graz University of Technology
Inffeldgasse 16c, 8010 Graz, Austria

Preprint No. 1

TU

Grazm

Keywords: Digital Chemistry, Polyoxometalate, Cheminformatics, Artificial Intelligence, FAIR Data



Edited by

Chemical Modelling and Informatics Group
Institute of Physical and Theoretical Chemistry
Graz University of Technology

Stremayrgasse 9, 8010 Graz

Austria (Europe)

E-Mail: kondinski @tugraz.at
World Wide Web: http://chemin.at/


mailto:kondinski@tugraz.at
http://chemin.at/

Abstract

Polyoxometalates (POMs) are nanoscale, structurally versatile metal-oxo clusters
with emerging applications in sustainability, energy, nanoelectronics and life science
technologies. Owing to their structural complexity, some all-inorganic POMs are of-
ten perceived as serendipitous outcomes from self-assembly processes, which poses
challenges for scalable rational design. From this perspective, we therefore exam-
ine how the development of POM informatics and, more generally, data-driven POM
exploration can pave the way for the molecular engineering of new POM-based mate-
rials targeting customised applications. In the process, we highlight recent successes
in the digitalisation of POM chemistry and outline which advanced technologies are
necessary for progress in this promising area of research.

Highlights
* POM chemistry is entering a digital, data-driven era (POM 4.0).
* Cheminformatics and FAIR data enable machine-actionable POM knowledge.
* Al and robotics accelerate POM discovery and rational design.

* Data-driven frameworks open advances in catalysis, energy, and biomedicine.
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1 Introduction

Polyoxometalates (POMs) are discrete, highly charged nanomolecular metal-oxo clusters,
typically built of early transition metals in high oxidation states.[*”! POMs exhibit a wide
range of structural and compositional versatility, ranging from small tri- or tetrametalate
clusters to giant assemblies composed of dozens or even hundreds of metal centres.*!
Their modular composition and tunable oxidation states make them suitable for applica-
tion in catalysis, molecular electronics, energy storage and life science.!'”**** Moreover,
POMs serve as integral building blocks for extended solids and hybrid materials, where
they retain their redox-active and structural functionalities. [%*!

POM chemistry has been gradually evolving for over two centuries (see Figure 1). Pi-
oneering chemists such as Scheele and Berzelius had already noted the formation and
synthesis of POMs in the late 18" and early 19" centuries; however, their structuring re-
mained unknown until the early 20% century.>**°! The foundations of coordination chem-
istry by Alfred Werner have rekindled interest in this aspect of POMs, motivating various
structural proposals and ultimately the first crystallographic elucidations.”'*" In this re-
gard, many common “classical” POM archetypical structures such Keggin, Lindqvist,
Wells—Dawson, octamolybdate, paratungstate, and decavanadate, were first reported dur-
ing the 1930s and 1950s, which marks a second stage in the development of POM chem-
istry. *!*l Fundamental interest in POMs as well as applications in catalysis have been
driving the molecular engineering of POMs since the 1950s onward.!®! In this third pe-
riod of developments, the number of known POMs has significantly expanded. Also,
from the early 2000s, advances in computational chemistry and computer technologies
have created opportunities for a more comprehensive understanding of the intrinsic sta-
bility of POMs, their electronic and spectroscopic properties in relation to experimental
observations.*’! With the rapid digitisation over the past few years and global access to
advanced artificial intelligence (Al) tools, POM chemistry and POM-based technologies
are gradually entering a new fourth “digital” or “data-driven” stage, to which, inspired by
the parallels of the Fourth Industrial Revolution, we may even refer to as “POM 4.0”.7!

In this perspective, we, therefore, examine the immediate challenges for data-driven POM
chemistry, starting with the necessity to express POM information in a machine-actionable
format. This necessity requires the urgent development of polyoxometalate cheminfor-
matics, that is, the computational and informational technique toolset that will enable
the solving of polyoxometalate chemical problems. Polyoxometalate cheminformatics
will naturally also encompass standardisations capturing the caveats of POM structure
representation, the complexity of POM-based processes and the dynamics of POM in-
terconversions. Although applications of Al have enabled advances in POM chemistry
in recent years, wider standardisation and semantic structure description enable laying
the foundations for automated, evidence-based reasoning as part of broad knowledge sys-
tems.**! Formalisation of the POM structural and electronic features is also a step for
understanding the self-organisation and reactivity of the building block constituents (e.g.
multimetal-oxo fragments) that may be similar across different structures or show some
correlated activity behaviour (e.g., catalaphores, toxicophores, etc) Finally, accelerating
the frontier of data-driven POM chemistry comes with the adaptation and tailoring of Al
technologies, aspects that are addressed in this work.
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Figure 1: Compact timeline of the evolution of POM chemistry

2 Polyoxometalate Cheminformatics

Information denotes structured data that document the properties of entities, whereas
knowledge comprises the logical relations among those data that explain causality.*"!
Robust decision making in chemistry and the symbolic-Al systems that support it there-
fore require rigorously defined formal representations of chemical concepts and instances,
a need that historically drove the emergence of cheminformatics." POMs as inorganic
entities featuring complex coordination and bonding, remain challenging to address via
common cheminformatics identifiers.!'*! However, much of their subfamily taxonomisa-
tion goes along three main factors (see Figure 2.a): i) elemental composition, ii) elec-
tronic structure and iii) generic archetype topology. Systematic explorations of POM
reactivity require fine tuning of a single factor across a series of POM instances. How-
ever, this often may be challenging as the three factors are not fully independent from one
another and often influence each other. POMs can be classified according to their elemen-
tal composition, specifically by the dominant addenda element (e.g., polyoxotungstates,
polyoxomolybdates, polyoxovanadates, etc.). The compositional dimension also provides
distinction between a “iso-" or “hetero-", “mixed-metal” (i.e. “mixed-addenda”), “oxo-
substituted”, protonated, “hybrid”, or other type of POM instances.!**”! In addition to the
elemental aspect, the structural POM archetype refers to a canonical arrangement of the
metal-oxo building blocks, which can be seen as analogous to the concept of “frame-
works” in the context of zeolite and reticular chemistry.**) Well-known examples include

the Keggin [XM,04]"" and Wells-Dawson [X,M50¢,]" " archetypes. Some archetypes
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Figure 2: (a) Schematic representation of the herein proposed three key concepts guiding
further taxonification of POMs. Note that POMs are entities or subcomponent
of typically crystaline POM Materials. Both POMs and POM materials can a
subject of theoretical investigations or considered as components of chemical
transformations. (b) A scatter plot from a curated dataset>”! of POM instance,
comparing overall formula charge and molecular mass and a “zoomed in”
version with molecular masses up to 30,000 Da. Points are colour-coded by the
main addenda metal (e.g., W = green, Mo = orange, V = light blue, and other
metals shown in dark blue). Examples of some representative high-nuclearity
structures are shown in (b)

can be encountered for different addenda element-based POM, which often allows the
construction of mixed metal systems with tailoring properties.*'! On the other hand, there
are also archetypes that appear idiosyncratic and often strictly linked to a particular ad-
denda element or a molecular composition. In more structurally complex POM, different
building block combinations may favour the formation of distinct archetypes, depending
on reactivity and availability. " The local coordination, which also stipulates the number
of terminal oxo/hydroxo/aqua ligands per addenda centre, is a reflection of the particu-
lar archetype, and it directly affects the structural integrity of the POM to be involved
in (multielectron) redox processes. Finally, the electronic structure of the POM, which
includes the total overall charge and its distribution, is another important aspect as it pro-
vides differentiation between “fully oxidised”, “partially reduced” and fully, highly and
super-reduced POMs. **] The charge configuration and its (de)localisation can further af-
fect the magnetic and internal bonding properties, as metal-metal bonding can, for some
(partially) reduced structures. !

As mentioned earlier, standard chemical identifiers for organic molecules, such as the
Simplified Molecular-Input Line-Entry System (SMILES) or the International Chemi-



cal Identifier (InChl), often struggle with complex inorganic species such as POMs.!'*!

Features like bridging oxo ligands, protonation equilibria, mixed metal oxidation states,
and open-shell electrons are generally difficult to encode in standard string-based repre-
sentations. The placement of protons on bridging versus terminal oxygens can alter the
observed structure considerably, yet conventional encodings lack a robust syntax for cap-
turing these subtle differences. Similarly, partially reduced POMs may exhibit electron
delocalisation, variable metal-oxo bond orders, or open-shell spin states. One strategy to
address these challenges is to develop extended encodings specifically designed for inor-
ganic systems or to implement hybrid approaches that integrate both geometry and elec-
tronic structure. In this regard, the classical Chemical Markup Language (CML) which
is based on an eXtensible Markup Language (XML) format that can include specialized
tags for redox states, bridging ligands, and other elaborate features, may provide a suit-
able and rather flexible information framework for describing POMs. "1 However, its
verbosity, steeper learning curve, and the need for carefully maintained domain-specific
schemas can limit broader adoption.

The recently curated dataset of POM formulas covering the representation of nearly 2000
POM formulas (see Figure 2.b and c), is a step towards the development of POM chemin-
formatics. ™ For each POM formula instance, the dataset also incorporates linked infor-
mation such as literature provenance, total charge, molecular mass, and list of constituting
elements, allowing programmatic search and comparisons. Plots of charge versus molec-
ular mass can be indicative of stability limits in super- and undercharged POMs. Future
augmentation of this curated POM dataset with electronic information, such as oxidation
states of different elements, synthetic information, and reactivity, can be of high inter-
est not only for the development of a comprehensive POM knowledge base, but also for
predictive analytics. Among various considerations, the identification and formal repre-
sentation of POM archetypes is crucial not only for clustering POM instances, ! but also
for applying rational approaches to understand and discover new ones.

3 Current Trends — Al for POMs

Despite the need for comprehensive POM cheminformatics, Al techniques have been
more frequently leveraged at different stages of POM discovery over the past few years.
One prominent example is the use of artificial neural networks (ANNs) for modelling
POM solubility. Rahman et al.’” developed an ANN incorporating a physically mo-
tivated o-profile descriptor to capture how alkali cations modulate aqueous solubility
across diverse POM salts, revealing three main trends—‘“normal,” “anomalous,” and an
experimentally validated “amphoteric” regime exemplified by [TigNb;40s4]'4~. Comple-
menting such predictive frameworks, Skjerve et al. P®! introduced an explainable machine
learning (ML) approach, ML-MotEx, to interpret time-resolved crystallisation pathways
from Pair Distribution Function (PDF) data of transition-metal tungstates, systematically
fitting thousands of candidate POM-like fragments and applying SHapley Additive exPla-
nation (SHAP) to identify the most critical Keggin-type building blocks. Their analysis
linked more-ordered POM precursors (e.g. Fe-W compositions) to rapid crystallisation,
whereas disordered Co/Ni analogs stalled as amorphous intermediates, thereby highlight-



ing mechanistic connections between local POM motifs and global kinetics. Meanwhile,
Anker et al.®! introduced POMFinder, a tree-based eXtreme Gradient Boosting (XG-
Boost) classifier trained on an extensive simulated POM database, demonstrating 94%
accuracy in classifying experimentally measured PDFs, including fast-acquisition or in
situ data, with SHAP analysis pinpointing metal-metal distances as dominant predic-
tive features. Beyond solubility and crystallisation, Dan et al.!'”! showed that unsuper-
vised pipelines can extract hierarchical motifs directly from high-resolution electron mi-
croscopy images using a “classify-then-compose” scheme based on rotationally invariant
Zernike descriptors. Their algorithm uncovered a novel pentagonal arrangement of metal—
oxide octahedra in a Mo—V-Te-Nb mixed-metal oxide, showcasing how motif-level in-
sights help identify hidden structural phases and possible self-assembly routes.

On the other hand, modular robotic platforms have obtained increasing interest in the
context of automated discovery and synthesis of POM materials by integrating recon-
figurable hardware with sophisticated algorithmic control.’®°°! These systems employ
standardised interfaces and programmable reaction modules that execute precise fluid
handling, real-time monitoring, and adaptive condition adjustments based on feedback
loops."®" Algorithm-driven robots enable high-throughput experimentation across com-
plex synthesis spaces, For instance, an autonomous platform used probabilistic search
methods to explore electrochemical routes for inorganic species (including POM clus-
ters) with minimal human intervention.””! Reinforcement learning and active learning
strategies refine reaction parameters in closed-loop workflows, as exemplified by the dis-
covery of novel POM-MOF structures through iterative screening guided by uncertainty
metrics.”®! Human-in-the-loop approaches can further enhance efficiency. While fully
autonomous systems accelerate the identification of “gigantic” POM clusters, collabora-
tive algorithms that combine human intuition with machine learning have outperformed
strategies relying solely on either robots or humans.?**!! By using adaptive Al models,
such as Bayesian optimisation and neural networks, robots can map vast experimental
conditions swiftly, refining hypotheses on-the-fly to arrive at optimal or unexpected tar-
gets. This synergy between modular robotic architectures and state-of-the-art machine
learning frameworks offers a transformative pathway for accelerating POM discovery,
ensuring more reproducible, data-rich experimentation and enabling breakthroughs in in-
organic materials research that would be exceedingly difficult through manual methods
alone.

4 Benefits — Al for “POM-Tech”

The nanoscopic and redox-responsive properties of POMs, make them promising candi-
dates across multiple technological frontiers.”**%] In catalytic applications, POMs excel
at facilitating (photo)oxidations and multi-electron processes, partly due to their strong
Brgnsted acidity and redox tunability.!’! However, the coexistence of multiple reactive
sites and oxidation states complicates mechanistic elucidation, prompting data-driven ap-
proaches to correlate structural motifs with catalytic performance.*°”! Neural-network
models can predict key descriptors (e.g., deprotonation enthalpies, electron affinity) and
thereby pinpoint “catalophores” that promote higher turnover frequencies or improved sta-



bility under reaction conditions.*®! Recent breakthroughs in interpretable machine learn-
ing for oxide-based catalysis have enabled the identification of structural “genes”, provid-
ing transparent design rules for active sites.[®”!

Another application area is “POMtronics,” where POM clusters are deployed in molecular
electronics and neuromorphic architectures.”’”! Because these clusters can be reversibly
oxidized or reduced in molecular junctions, they afford large and stable modulations of
conductance for memory and switching functionalities.””! Advanced machine-learning
techniques (e.g., unsupervised clustering) have proven adept at analysing the extensive
current—voltage datasets generated, revealing subtle structure—property correlations that
guide device optimisation.!””] Furthermore, POM-assisted ionic migration can enhance
memristor performance, a crucial step toward realising reservoir computing systems. !
Drawing on established pipelines from organic electronics'*®!, one can explore redox-
active motifs and next-generation (hybrid) POM-based electronic devices.

Finally, POMs are emerging as essential components of extended solids and biocompos-
ites, leveraging their robust frameworks and potential bioactivity.!'>!%!%3%.55] Their inte-
gration into proteins, polymers, or nanoparticles can yield antibacterial, antiviral, or an-
ticancer effects, as well as enzyme-like activity.!”-!*!'! Notably, POM-protein assemblies
have facilitated protein crystallography, while regioselective oxidative cleavage highlights
the artificial-metalloenzyme potential of certain clusters.!!! Yet the rational design of
POM-biocomposites remains challenging, as minor alterations in cluster composition and
reaction conditions often produce major shifts in biological outcomes.!*! Moreover, the
solution behaviour of POMs, including partial hydrolysis, decomposition products, and
the presence of heavy metals such as tungsten and vanadium, requires thorough toxic-
ity assessment.””! Data-driven methods such as biomedical knowledge graphs can clarify
structure—activity relationships and streamline toxicity predictions, as demonstrated by
advances in drug discovery.!'”!

While machine learning has already produced valuable insights, most current models are
trained on narrow and sometimes imbalanced data sets and this limits both accuracy and
transferability. Studies on porous framework materials show that performance plateaus
at modest data volumes and motivate transfer learning and data augmentation.>*! Hybrid
workflows that combine data driven learners with domain knowledge captured in large
scale knowledge graphs widen chemical coverage and improve confidence estimates.
Surveys of language models for chemistry recommend attaching explicit uncertainty met-
rics when data are sparse.” Together with progress in knowledge engineering these de-
velopments indicate that blending symbolic reasoning with machine learning can deliver
more reliable predictions for POM chemistry in the near future. !

5 Critical Enablers for POM 4.0

Knowledge Graphs and Large Language Models.

The integration of large language models (LLMs) and knowledge graphs (KGs) has
significantly advanced reticular chemistry, particularly in the design and discovery of
metal-organic frameworks (MOFs). For example, Zheng et al. introduced a “GPT-4
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Figure 3: Schematic overview of an envisioned data-driven ecosystem for POM 4.0, with
a findable, accessible, interoperable, and reusable (FAIR) data infrastructure
at its core. Automated synthesis and real-time characterisation feed experimen-
tal data into centralised repositories, enabling data augmentation and knowl-
edge graph (KG)-driven analyses. Large Language Models (LLMs) and Al
agents interpret this information, guided by visual analytics tools that engage
researchers in the loop.

Reticular Chemist” framework that operates through a cooperative Al-human workflow
for planning reactions, transferring solutions, and characterising results, successfully
guiding the discovery of an isoreticular series of MOFs.[°*! Likewise, An et al. developed
the MOF Knowledge Graph (MOF-KG) alongside a benchmark dataset for Knowledge
Graph Question Answering in Materials Science (KGQA4MAT), enabling domain experts
to query complex chemical data in a natural language format.*! These studies highlight
the synergy between large language models (LLMs) and knowledge graphs (KGs). LLMs
are well-suited for interpreting unstructured text and generating hypotheses, while KGs
provide a structured and consistent framework that supports data accessibility and precise
querying. In addition, LLMs can assist in formulating complex queries, particularly when
users are not fully familiar with the structure of the knowledge graph.

Beyond reticular chemistry, similar integrations have catalysed progress in a broad
range of chemical fields. ChemCrow, an LLM-based chemistry agent, demonstrates
autonomous performance in organic synthesis, drug discovery, and materials design by
coupling natural language generation with specialised toolkits.!'®! Knowledge graph ap-
proaches, including those as part of The World Avatar Project, have also proven effec-
tive for metal-organic polyhedra and zeolitic frameworks, underscoring their versatil-
ity.[?%92531 For POM research, domain-specific KGs that capture detailed experimental
and computational information can serve as a robust backbone for Al-driven workflows,
while LLMs can interpret existing literature, guide new experiments, and help verify re-



sults. This synergy between unstructured data processing and structured knowledge rep-
resentation holds considerable promise for accelerating POM discovery and innovation.

Computer Vision and Interactive Data Visualisation

Although computer vision may not be regarded as indispensable for advanced POM re-
search, a substantial amount of published POM data is locked in graphical formats. Re-
cently, large-language models with vision capabilities (e.g., GPT-4V) have demonstrated
the ability to parse and extract experimental data from figures—including thermogravi-
metric analysis curves and redox states—in the context of MOFs.[°”! Adapting such vi-
sion models to the distinct challenges of POMs, where reaction progress may hinge on
subtle colour changes, precipitation onset, or intermediate formation, is a promising yet
underexplored research direction.

Many modular platforms for POM synthesis rely on visual cues—such as turbidity or
precipitate formation—to guide key steps like filtration. Recent advances from the Hein
group demonstrate how webcam-based systems, driven by deep learning, can monitor re-
actions in real time by detecting colour changes linked to redox states or precipitation
events.””) Automated platforms (e.g., HeinSight 2.0) can thus promptly identify turbid-
ity or crystallisation endpoints, allowing for immediate intervention. In POM chemistry,
where tight control over reaction variables is essential, Al-driven vision can be integrated
with other sensors (e.g., pH and redox potential) to adjust reagent feeds or stirring condi-
tions automatically, reducing researcher workload and enhancing reproducibility.

Interactive data visualisations are powerful tools for exploring high-dimensional and
time-series data in chemistry. Incorporating human-in-the-loop workflows supports ex-
ploration, insight generation, hypothesis testing, and result confirmation. Visual analytics
systems,”! for instance, combine data visualisation, machine learning (ML), and user in-
teraction to transform raw data into actionable information. Techniques such as visually
comparing subspaces in large datasets!®!! or identifying correlations in chemicall®”! and
biomolecular datal'”! can reveal patterns that automated algorithms may miss. Visuali-
sation methods also help researchers interpret and guide machine learning models, ”*!*]
and they are no longer confined to desktop environments—augmented and virtual reality
setups,!! for example, offer immersive ways to navigate complex molecular assemblies.
Collectively, these visual analytics techniques and computer-vision capabilities place hu-
mans at the centre of data analysis, bridging the gap between large-scale data pipelines
and on-the-fly experimental decision-making in POM research.

Data Infrastructure and Community Efforts

The adoption of FAIR (Findable, Accessible, Interoperable, Reusable) data principles
is crucial for advancing POM chemistry.[®*! Currently, many computational results al-
ready conform to standardized formats,”! which facilitates FAIR data sharing. How-
ever, compared to other domains of materials science,”*! POMs have yet to benefit from
large-scale quantum mechanical calculations that generate the extensive datasets needed
for data-driven discoveries.

Experimental POM data are typically shared through publications and repository plat-
forms, some of which may not share programmatic access or FAIR data sharing policies,
thus requiring intense manual involvement. The growing use of robotic synthetic plat-
forms is likely to change this, as improvements in reproducibility will allow researchers

10



to report both successful and unsuccessful outcomes, which is essential information for
refining machine learning models. Through systematic and transparent reporting of exper-
imental data, POM chemistry can be more effectively integrated into the broader chemi-
cal data ecosystem, fostering collaborative innovation and paving the way for data-driven
breakthroughs. Journals, funding agencies, and the broader research community all play
a crucial role in supporting these efforts.

A practical next step would be a community database that follows the curated and
ontology-driven style of ChEBI rather than the broad crowd-sourced model. Every POM
entry would carry a persistent identifier plus linked records for synthesis conditions char-
acterisation data electronic state and literature provenance. The schema can extend Chem-
ical Markup Language with terms from the Ontologies for Chemistry initiative ®”! so that
records are machine-actionable. Programmatic access through application programming
interfaces and Resource Description Framework dumps will feed knowledge graphs and
learning algorithms. Open resources such as the Materials Project or the Open Reac-
tion Database have shown that FAIR repositories coupled with agreed ontologies acceler-
ate discovery and power autonomous laboratories.>?! A similar framework would allow
POM researchers to capture both successful and null results and turn them into reliable
training data for future models.

Q 0O
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& Training
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Figure 4: Closed loop workflow for data-driven POM discovery. A FAIR POM database
constructs and trains an ML and knowledge graph model which selects targets
for robotic synthesis and in situ characterisation. The labelled and uncertainty-
scored results return to the database and refine the next cycle.
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6 Outlook

Establishing a robust, data-driven ecosystem for POM research will require both refined
cheminformatics and flexible, automated experimental workflows. Open-access databases
that harmonise experimental and computational insights, complete with consistent de-
scriptors for archetypes, protonation states, and electronic configurations, would enable
algorithmic exploration of the POM landscape at an unprecedented scale. In parallel, re-
configurable robotic platforms can integrate in situ spectroscopic and scattering methods
to capture the subtleties of POM formation, such as slow crystallisation or complex redox
processes. By feeding this continuous stream of real-time data into advanced analytics,
researchers can systematically map reaction parameters while minimising the trial-and-
error approach that often dominates POM synthesis.

Moreover, as summarised in Figure 4, community-driven digital platforms can consol-
idate these outputs and incorporate Al tools for screening, predicting, and interpreting
results, helping to narrow down the vast combinatorial space of potential POM architec-
tures. This approach would also foster a collaborative research culture by encouraging
the publication of both successful and partially explored reaction data, an important step
toward FAIR-compliant datasets. As computational power increases, tighter integration
of quantum chemical simulations within these pipelines will further refine predictions, al-
lowing researchers to anticipate stable structural motifs or redox states before any reagents
are mixed. Ultimately, by combining comprehensive data frameworks with responsive
automation and targeted simulation, the field can move beyond serendipity and toward
genuine, predictive POM design, opening new frontiers in catalysis, energy conversion,
and (bio-)materials innovation.
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